Math 254-1 Exam 6 Solutions

1. Carefully define the Linear Algebra term "independent". Give two examples from \mathbb{R}^{2}.

A set of vectors is independent if no nondegenerate linear combination yields $\overline{0}$. Any single nonzero vector is independent, such as $\{(1,1)\}$ or $\{(2,3)\}$; also, any basis is independent, such as $\{(1,0),(0,1)\}$.
2. In the vector space $M_{2,3}$ of 2×3 matrices, set $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 5\end{array}\right), B=\left(\begin{array}{ccc}2 & 4 & 7 \\ 10 & 1 & 13\end{array}\right), C=\left(\begin{array}{lll}1 & 2 & 5 \\ 8 & 2 & 11\end{array}\right)$. Determine whether or not $\{A, B, C\}$ is independent.

Let E be the standard basis for $M_{2,3}$. Then $[A]_{E}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 0\end{array}\right],[B]_{E}=$ $[24710113],[C]_{E}=\left[\begin{array}{ll}1 & 5 \\ 2 & 2\end{array} 11\right]$. We put these row matrices into a larger matrix (putting them as columns leads to a different equally valid approach), which we then put into echelon form: $\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 0 & 5 \\ 2 & 4 & 7 & 1 & 1 & 1 \\ 1 & 2 & 5 & 8 & 1 & 11\end{array}\right) \sim\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 0 & 5 \\ 0 & 0 & 1 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
This has two pivots, hence has rank 2 , hence $\{A, B, C\}$ is dependent.
3. In the vector space $\mathbb{R}_{3}[x]$ of polynomials of degree at most 3 , set $u_{1}=x^{3}+x^{2}+2 x+$ $1, u_{2}=x^{3}-x^{2}+x+1, u_{3}=x^{3}+5 x^{2}+4 x+1, u_{4}=x^{3}+2 x^{2}+3 x+4$.
Set $S=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Find the dimension of S, and a basis.
Let $E=\left\{1, x, x^{2}, x^{3}\right\}$ be the standard basis for $\mathbb{R}_{3}[x]$. We have $\left[u_{1}\right]_{E}=$ $\left[\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right],\left[u_{2}\right]_{E}=\left[\begin{array}{llll}1 & 1 & -1 & 1\end{array}\right],\left[u_{3}\right]_{E}=\left[\begin{array}{llll}1 & 4 & 5 & 1\end{array}\right],\left[u_{4}\right]_{E}=\left[\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right]$. We put these row matrices into a larger matrix (an alternate solution puts them as columns), which we then put into echelon form: $\left(\begin{array}{cccc}1 & 2 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 4 & 5 & 1 \\ 4 & 3 & 2 & 1\end{array}\right) \sim\left(\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 8 & -3 \\ 0 & 0 & 0 & 0\end{array}\right)$. This has rank 3; hence $\operatorname{dim} S=3$. A basis for S is $\left\{1+x+2 x^{2}+x^{3},-x-2 x^{2}, 8 x^{2}-3 x^{3}\right\}$.
4. In the vector space \mathbb{R}^{2}, set $S=\{(1,1),(4,5)\}$, a basis. Find the change-of basis matrix from the standard basis to S, and use this matrix to find $[(5,-3)]_{S}$.
$P_{E S}=\left(\left[s_{1}\right]_{E}\left[s_{2}\right]_{E}\right)=\left(\begin{array}{ll}1 & 4 \\ 1 & 5\end{array}\right) ; P_{S E}=P_{E S}^{-1}=\left(\begin{array}{cc}5 & -4 \\ -1 & 1\end{array}\right)$ is the desired change-ofbasis matrix. We find $[(5,-3)]_{S}=P_{S E}\binom{5}{-3}=\left[\begin{array}{c}37 \\ -8\end{array}\right]_{S}$.
5. In the vector space \mathbb{R}^{3}, set $T=\{(1,1,1),(0,1,2),(1,1,3)\}$, a basis. Find $[(1,2,2)]_{T}$.
$P_{E T}=\left(\left[t_{1}\right]_{E}\left[t_{2}\right]_{E}\left[t_{3}\right]_{E}\right)=\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right) ; P_{T E}=P_{E T}^{-1}=\left(\begin{array}{ccc}1 / 2 & 1 & -1 / 2 \\ -1 & 1 & 0 \\ 1 / 2 & -1 & 1 / 2\end{array}\right)$ is the desired change-of-basis matrix, found by applying ERO's to $\left(P_{E T} \mid I\right)$ until we achieve $\left(I \mid P_{T E}\right)$. We find $[(1,2,2)]_{T}=P_{T E}\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=\left[\begin{array}{c}3 / 2 \\ 1 \\ -1 / 2\end{array}\right]_{T}$.

