Math 254-1 Exam 6 Solutions

1. Carefully define the Linear Algebra term "independent". Give two examples from \mathbb{R}^2 .

A set of vectors is independent if no nondegenerate linear combination yields $\overline{0}$. Any single nonzero vector is independent, such as $\{(1,1)\}$ or $\{(2,3)\}$; also, any basis is independent, such as $\{(1,0), (0,1)\}$.

2. In the vector space $M_{2,3}$ of 2×3 matrices, set $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 & 7 \\ 10 & 1 & 13 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 5 \\ 8 & 2 & 11 \end{pmatrix}$. Determine whether or not $\{A, B, C\}$ is independent.

3. In the vector space $\mathbb{R}_3[x]$ of polynomials of degree at most 3, set $u_1 = x^3 + x^2 + 2x + 1$, $u_2 = x^3 - x^2 + x + 1$, $u_3 = x^3 + 5x^2 + 4x + 1$, $u_4 = x^3 + 2x^2 + 3x + 4$.

Set $S = span\{u_1, u_2, u_3, u_4\}$. Find the dimension of S, and a basis.

4. In the vector space \mathbb{R}^2 , set $S = \{(1,1), (4,5)\}$, a basis. Find the change-of basis matrix from the standard basis to S, and use this matrix to find $[(5,-3)]_S$.

 $P_{ES} = ([s_1]_E \ [s_2]_E) = (\begin{smallmatrix} 1 & 4 \\ 1 & 5 \end{smallmatrix}); P_{SE} = P_{ES}^{-1} = (\begin{smallmatrix} 5 & -4 \\ -1 & 1 \end{smallmatrix})$ is the desired change-ofbasis matrix. We find $[(5, -3)]_S = P_{SE} (\begin{smallmatrix} 5 \\ -3 \end{smallmatrix}) = [\begin{smallmatrix} 37 \\ -8 \end{smallmatrix}]_S$.

5. In the vector space \mathbb{R}^3 , set $T = \{(1,1,1), (0,1,2), (1,1,3)\}$, a basis. Find $[(1,2,2)]_T$.

 $P_{ET} = ([t_1]_E \ [t_2]_E \ [t_3]_E) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}; P_{TE} = P_{ET}^{-1} = \begin{pmatrix} \frac{1/2}{-1} & \frac{1-1/2}{0} \\ \frac{1/2}{-1} & \frac{1}{-1/2} \end{pmatrix}$ is the desired change-of-basis matrix, found by applying ERO's to $(P_{ET}|I)$ until we achieve $(I|P_{TE})$. We find $[(1, 2, 2)]_T = P_{TE} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{bmatrix} 3/2 \\ 1 \\ -1/2 \end{bmatrix}_T^2.$